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Introduction

Group Moving Patterns

• Company Patterns

• Aggregation Patterns

• Divergence Patterns

• Leadership Patterns

• Popular Patterns

• Mutant Patterns
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So……where’re Moving Together Patterns?



Relative Motion Patterns

Relative Motion Patterns

• To identify similar movements in a collection 

of  MOPs(moving point objects)

• REMO analysis
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• A transformation of lifeline data to a REMO 

matrix featuring motion attributes(i.e. speed, 

acceleration or motion azimuth)

• Match of formalized patterns on the matrix 



Relative Motion Patterns

An example:
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Relative Motion PatternsPart 1
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Basic Motion :

Constance: sequence of equal 

motion attributes for r consecutive 
timestamps

Concurrence: incident of n

MPOs showing the same motion 
attributes at time t

Trend-setter: one trend-setting 

MPO anticipates the motion of n
others



Relative Motion Patterns

Spatial Motion Patterns

Basic Motion + Spatial Constraints(proximity measure)
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• The maximal length of the cumulated distances to the mean or 

median center

• The average length of the Delaunay edges of the group

• MBB(i.e. a ellipse)

• The indication of a maximal border length of the convex hull



Relative Motion Patterns

Flock:

Concurrence + Spatial constraints
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Relative Motion Patterns

Leadership:

Trend-setter + Spatial constraints
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Relative Motion Patterns

Aggregation/Disaggregation Motion Patterns
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• Convergence: Set of m MPOs at interval  i with motion azimuth 

vectors intersecting  within a range R of radius r

• Encounter: Actually meeting within R extrapolating the current 

motion

• Divergence: The opposite of the Convergence

• Breakup: The opposite of the Encounter



Relative Motion PatternsPart 1
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An example:
Convergence
without cluster



Relative Motion PatternsPart 1
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Drawbacks:
• Hard to define an absolute distance between two objects
• Hard to define r (i.e. Lossy-flock problem)
• A single r is unrealistic



Density-Based Motion Patterns

Density-Based Motion Patterns

Allow the capture of trajectories of arbitrary shape
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• Convoy: Density-Based Flock

• Swarm: Time-Relaxed Convoy

• Moving Cluster: A sequence of spatial cluster



Moving Cluster:

A set of objects that move close to each other for a time 
duration
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Flock:
• A disc of rigid size
• K consecutive timestamps

Convoy:
• Dense-based clustering

Swarm:

• K (non-consecutive) 
timestamps

Density-Based Motion PatternsPart 1
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Dense Area Detection: Drawbacks

𝑥

𝑦
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Gathering Patterns

Gathering PatternsPart 2
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• Key Attributes

• Definitions

• How does it work



Key AttributesPart 2
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• Scale: A gathering typically involves a relatively large number 

of individuals

• Density: Those individuals forms  a dense group

• Durability: It should last for a certain time period  continuously

• Stationariness: The geometric properties of the group is 

relatively stable

• Commitment: At any time of the gathering, there exist several 

dedicated members who stick to the group for a  certain 

time(possibly non-consecutive) 



DefinitionsPart 2
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• The trajectory of a moving object

𝑜 =< 𝑝1, 𝑡1 , 𝑝2, 𝑡2 , … , 𝑝𝑛, 𝑡𝑛 >

𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ∈ ℜ2 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑜 − 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡 𝑡𝑖 ∈ 𝒯𝐷𝐵

• Directly density-reachable

A point p is directly density reachable from a point q

w.r.t a given distance threshold 𝜖 and a integer m, if

𝑝 ∈ 𝑁𝜖 𝑞 and|𝑁𝜖 𝑞 | ≥ 𝑚

𝑤ℎ𝑒𝑟𝑒 𝑁𝜖 𝑝 = {𝑞 ∈ 𝑆|𝐷 𝑝, 𝑞 < 𝜖}



DefinitionsPart 2
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• Snapshot cluster

The snapshot cluster 𝑐𝑡 is 

 a non-empty subset of objects 𝒪 ∈ 𝒪𝐷𝐵

 ∀𝑜𝑝, 𝑜𝑞 ∈ 𝒪, 𝑜𝑝(t)is density-connected to 𝑜𝑞(𝑡)

 𝒪 is maximal



DefinitionsPart 2
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• Crowd

A crowd 𝐶𝑟 is 

 A sequence of snapshot cluster at consecutive 

timestamps

 The lifetime of 𝐶𝑟 is no less than 𝑘𝑐

 There should be at least 𝑚𝑐 objects at any time

 The distance between any consecutive pair of 

clusters is not greater than 𝛿



DefinitionsPart 2
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• Gathering

A crowd 𝐶𝑟 is called a gathering iff there 

exists at least 𝑚𝑝 participators in each snapshot 

cluster of 𝐶𝑟

• Participator

An object 𝑜 is called a participator iff it 

appears in at least 𝑘𝑝 snapshot cluster



DefinitionsPart 2
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𝑘𝑝 = 2,𝑚𝑝 = 3



How does it work

How does it workPart 2
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1. Snapshot cluster

2. Crowd discovery

Indexing clusters with R-tree/grid

3. Gathering detection

TAD

Updating



Crowd Discovery:

How does it workPart 2
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• 𝐶𝑟 is said to be closed if it has no super-crowd

• Longer gathering can exist in super-crowd if the 
crowd is not closed

• Computing Hausdorff distance is high-cost!



Indexing cluster with R-tree:

Crowd DiscoveryPart 2
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• 𝑑𝑚𝑖𝑛(𝑀 𝑐𝑖 , 𝑀(𝑐𝑗) ≤ 𝑑𝐻(𝑐𝑖 , 𝑐𝑗)

• Index the MBRs of the cluster in C by a R-tree

𝒪 MN −→ 𝒪(log𝑀 𝑁)



Indexing cluster with R-tree: Drawbacks

Crowd DiscoveryPart 2
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• R-tree still costs a lot in construction and maintain

• MBRs may not capture the distribution of clusters



Indexing cluster with Grid:

Crowd DiscoveryPart 2
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• Partition the space into by a grid

• The side length of each cell equals to 
1

2
𝛿

• Maintain a cell list for each cluster and a inverted 

list for each cell

• Affect Region: A cell 𝑔𝑎𝑏’s AF is the set of cells 

whose minimum distance with 𝑔𝑎𝑏 less than 𝛿



Gathering Detection

How does it workPart 2
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The downward closure property doesn’t hold anymore

• TAD

• BVS

• Discovering gathering incrementally



TAD(Test-and-Divide)

Gathering DetectionPart 2
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Sub-crowd?

Divided by 
removing invalidate 

cluster

Output

N

Y

• The gathering output by TAD are closed



TAD(Test-and-Divide)

Gathering DetectionPart 2
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𝑘𝑝 = 𝑘c =3，m𝑝 = 𝑚𝑐 = 3



BVS(Bit Vector Signature)

How does it workPart 2
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TAD & BVS

How does it workPart 2
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• Test Step

• Count the 1 bits in B(o) with bit operation

m1, m2 and m3 are called masks



TAD & BVS

How does it workPart 2
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• Divide Step

• No need to process BVSs of non-participators

• Extract clusters by AND operation and masks for 

clusters i.e. 11110000



Discovering gathering incrementally

How does it workPart 2
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• New database 

𝒪′𝐷𝐵 = 𝒪𝐷𝐵 ∪ 𝒪𝑛𝑒𝑤

• New time domain

𝒯′𝐷𝐵 = 𝒯𝐷𝐵 ∪ 𝒯𝑛𝑒𝑤



Discovering gathering incrementally

How does it workPart 2
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• Crowd Extension:

Given a closed crowd 𝐶𝑟 = {𝑐𝑖 , … , 𝑐𝑗} in 𝒪𝐷𝐵, if its  last 

cluster in not at the most recent time point of 𝒯𝐷𝐵, then 𝐶𝑟

cannot be extended into 𝒪′𝐷𝐵



Discovering gathering incrementally

How does it workPart 2
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• Crowd Extension:



Discovering gathering incrementally

How does it workPart 2
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• Gathering Update:

• 𝐼𝐶(𝐶𝑟𝑛𝑒𝑤)∩ 𝐶𝑟𝑜𝑙𝑑 ⊆ 𝐼𝐶(𝐶𝑟𝑜𝑙𝑑)

Invalid cluster 𝐶𝑟𝑜𝑙𝑑 can be valid in 𝐶𝑟𝑛𝑒𝑤

• Given an invalid cluster 𝑐𝑗 ∈ 𝐼𝐶(𝐶𝑟𝑛𝑒𝑤)  

with 𝑗 ≤ 𝑛 + 1, then any closed gathering 

𝐺𝑟 ⊂< 𝑐𝑖 , … , 𝑐𝑗−1 > remains  closed  in 𝐶𝑟𝑛𝑒𝑤

Closed gathering remain closed



Extension  ModelsPart 3
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Urban Black Holes: STG(spatial-temporal Graph)
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Urban Black Holes: STG(spatial-temporal Graph)
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