

Moving Together Pattern

-- an overview

PRESENTED BY ZHAOYI, UESTC

xiaoFine@live.com

Outline

Moving Together

- Categories
- Application
- Earlier Models

Gathering Pattern

- Improvement
- Implementation

Extension Models

Urban black holes

Part 1 Introduction

Group Moving Patterns

- Company Patterns
- Aggregation Patterns
- Divergence Patterns
- Leadership Patterns
- Popular Patterns
- Mutant Patterns

So.....where're Moving Together Patterns?

Relative Motion Patterns

- To identify similar movements in a collection of MOPs(moving point objects)
- REMO analysis
 - A transformation of lifeline data to a REMO matrix featuring motion attributes(i.e. speed, acceleration or motion azimuth)
 - Match of formalized patterns on the matrix

An example:

Part 1

Relative Motion Patterns

Basic Motion :

Constance: sequence of equal motion attributes for *r* consecutive timestamps

Concurrence: incident of *n* MPOs showing the same motion attributes at time *t*

Trend-setter: one trend-setting MPO anticipates the motion of *n* others

Spatial Motion Patterns

Basic Motion + Spatial Constraints(proximity measure)

- The maximal length of the cumulated distances to the mean or median center
- The average length of the Delaunay edges of the group
- MBB(i.e. a ellipse)
- The indication of a maximal border length of the convex hull

Part 1 Relative Mo

Relative Motion Patterns

Flock:

Concurrence + Spatial constraints

Leadership:

Trend-setter + Spatial constraints

Aggregation/Disaggregation Motion Patterns

- *Convergence*: Set of m MPOs at interval *i* with motion azimuth vectors intersecting within a range *R* of radius *r*
- *Encounter*: Actually meeting within *R* extrapolating the current motion
- *Divergence*: The opposite of the Convergence
- *Breakup*: The opposite of the *Encounter*

An example: *Convergence* without cluster

Drawbacks:

- Hard to define an absolute distance between two objects
- Hard to define r (i.e. Lossy-flock problem)
- A single *r* is unrealistic

Density-Based Motion Patterns

Allow the capture of trajectories of arbitrary shape

- *Convoy*: Density-Based *Flock*
- Swarm: Time-Relaxed Convoy
- Moving Cluster: A sequence of spatial cluster

Moving Cluster:

A set of objects that move close to each other for a time duration

 $c_t \cap c_{t+1}$ θ $c_t \cup c_{t+1}$

Flock:

- A disc of rigid size
- K consecutive timestamps

Convoy:

• Dense-based clustering

Swarm:

 K (non-consecutive) timestamps

Dense Area Detection: Drawbacks

Part 2 Gathering Patterns

Gathering Patterns

- Key Attributes
- Definitions •
- How does it work •

Part 2 Key Attributes

- Scale: A gathering typically involves a relatively large number of individuals
- Density: Those individuals forms a dense group
- Durability: It should last for a certain time period continuously
- Stationariness: The geometric properties of the group is relatively stable
- Commitment: At any time of the gathering, there exist several dedicated members who stick to the group for a certain time(possibly non-consecutive)

The trajectory of a moving object $o = \langle (p_1, t_1), (p_2, t_2), \dots, (p_n, t_n) \rangle$ where $p_i \in \Re^2$ is the geo – spatial position sample at $t_i \in T_{DB}$ **Directly density-reachable** A point p is directly density reachable from a point q w.r.t a given distance threshold ϵ and a integer m_{ℓ} if $p \in N_{\epsilon}(q) \text{ and } |N_{\epsilon}(q)| \ge m$ where $N_{\epsilon}(p) = \{q \in S | D(p,q) < \epsilon\}$

I

Snapshot cluster

The *snapshot cluster c_t* is a non-empty subset of objects $\mathcal{O} \in \mathcal{O}_{DB}$

 $\forall o_p, o_q \in \mathcal{O}, o_p(t)$ is density-connected to $o_q(t)$ ${\cal O}$ is maximal

Crowd

A crowd C_r is A sequence of snapshot cluster at consecutive timestamps The lifetime of C_r is no less than k_c There should be at least m_c objects at any time The distance between any consecutive pair of clusters is not greater than δ

Gathering

A crowd C_r is called a gathering iff there exists at least m_p participators in each snapshot cluster of C_r

Participator

An object o is called a participator iff it

appears in at least k_p snapshot cluster

			the we	dit .	1	11d		•	la contra de	
	object	c_1	c_2	c_4	#	object	c_1	c_3	c_4	#
2	0 1		—	—	2	01			—	1
1	0 2	-	-	-	3	0 2	-		-	2
	0 3	-		-	2	0 3	-	-	-	3
	0 4	-	-		2	04	-			1
1	05	-			1	0 5	-	-		2
	06				0	06		-		1
	# Par.	3	3	3		# Par.	3	2	2	

 $k_p = 2, m_p = 3$

How does it work

- Snapshot cluster 1.
- **Crowd discovery** 2.
 - Indexing clusters with R-tree/grid
- Gathering detection 3.
 - Updatin

A

Crowd Discovery:

- C_r is said to be closed if it has no super-crowd
- Longer gathering can exist in super-crowd if the crowd is not closed
 - **Computing Hausdorff distance is high-cost!**

Part 2 Crowd Discovery

Indexing cluster with R-tree:

 $d_{min}(M(c_i), M(c_j) \le d_H(c_i, c_j))$

Index the MBRs of the cluster in C by a R-tree

Part 2 Crowd Discovery

Indexing cluster with R-tree: Drawbacks

- R-tree still costs a lot in construction and maintain
- MBRs may not capture the distribution of clusters

Part 2 Crowd Discovery

Indexing cluster with Grid:

- Partition the space into by a grid
- The side length of each cell equals to $rac{1}{\sqrt{2}}\delta$
- Maintain a cell list for each cluster and a inverted list for each cell
- Affect Region: A cell g_{ab} 's AF is the set of cells whose minimum distance with g_{ab} less than δ

Gathering Detection

The downward closure property doesn't hold anymore

- TAD
 - BVS

Discovering gathering incrementally

Part 2 Gathering Detection

TAD(Test-and-Divide)

Divided by removing invalidate cluster

Sub-crowd?

Output

The gathering output by TAD are closed

Part 2 Gathering Detection

TAD(Test-and-Divide)

 $k_p = k_c = 3$, $m_p = m_c = 3$

c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	
	o_1	o_1		o_1	o_1			
o_2	o_2	o_2	o_2			o_2	o_2	
03	03		o_3		o_3	o_3	o_3	
o_4		o_4	o_4	o_4	o_4	o_4	o_4	
	o_5	o_5	o_5					
				06	06			

BVS(Bit Vector Signature)

$B(o_1)$	0 1 1 0 1 1 0 0
$B(o_2)$	1 1 1 1 0 0 1 1
$B(o_3)$	1 1 0 1 0 1 1 1
$B(o_4)$	10111111
$B(o_5)$	0 1 1 1 0 0 0 0
$B(o_6)$	0 0 0 0 1 1 0 0

TAD & BVS

Test Step

Count the 1 bits in *B(o)* with bit operation

1) Let
$$m1 = 01010101$$
,
 $x = (x\&m1) + ((x \gg 1)\&m1) = 01011000$
2) Let $m2 = 00110011$,
 $x = (x\&m2) + ((x \gg 1)\&m2) = 00100010$
3) Let $m4 = 00001111$,
 $x = (x\&m4) + ((x \gg 1)\&m4) = 00000100$

m1, m2 and m3 are called masks

TAD & BVS

- Divide Step
 - No need to process BVSs of non-participators
 - Extract clusters by AND operation and masks for
 - clusters i.e. 11110000

Discovering gathering incrementally

New database

 $\mathcal{O'}_{DB} = \mathcal{O}_{DB} \cup \mathcal{O}_{new}$

New time domain

 $\mathcal{T'}_{DB} = \mathcal{T}_{DB} \cup \mathcal{T}_{new}$

Discovering gathering incrementally

Crowd Extension:

Given a closed crowd $C_r = \{c_i, \dots, c_i\}$ in \mathcal{O}_{DB} , if its last cluster in not at the most recent time point of T_{DB} , then C_r cannot be extended into \mathcal{O}'_{DB}

Discovering gathering incrementally

Crowd Extension:

t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	<i>t</i> 9	t_{10}	t_{11}	t_{12}
					c_{6}^{1}				c_{10}^1		
		c_{3}^{1}	c_4^1	c_{5}^{1}						c_{11}^1	c_{12}^1
c_1^1	c_{2}^{1}			c_{5}^{2}				c_{9}^{1}	c_{10}^2		
	c_{2}^{2}	c_{3}^{2}		c_{5}^{3}							
					c_{6}^{2}	c_7^1	c_{8}^{1}	c_{9}^{2}			
					c_6^3						

Discovering gathering incrementally

- Gathering Update:
 - $IC(C_{r_{new}}) \cap C_{r_{old}} \subseteq IC(C_{r_{old}})$

Invalid cluster $C_{r_{old}}$ can be valid in $C_{r_{new}}$

Given an invalid cluster $c_i \in IC(C_{r_{new}})$ with $j \le n + 1$, then any closed gathering $G_r \subset \langle c_i, \dots, c_{j-1} \rangle$ remains closed in $C_{r_{new}}$ Closed gathering remain closed

Part 3 Extension Models

Urban Black Holes: STG(spatial-temporal Graph)

Part 3 Extension Models

Urban Black Holes: STG(spatial-temporal Graph)

THANK YOU

PRESENTED BY ZHAOYI